Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Silvana Guilardi,*
 Antonio Eduardo da Hora Machado, Jackson Antônio Lamounier Camargos Resende and Eduardo de Faria Franca

Instituto de Química, Universidade Federal de Uberlândia, Caixa Postal 593, 38408-100, Uberlândia, MG, Brazil

Correspondence e-mail: silvana@ufu.br

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.055$
$w R$ factor $=0.120$
Data-to-parameter ratio $=16.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(Benzoxazol-2-yl)cromem-2-one

The coumarin and benzoxazole ring systems in the title compound, $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{NO}_{3}$, are planar. The angle between them is $5.24(8)^{\circ}$. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ attractive interactions.

Comment

Coumarin derivatives are known to be a very interesting class of natural and synthetic compounds, which afford extensive and diverse applications (O'Kennedy \& Thornes, 1997; Krasovitskii, 1988). These compounds exhibit strong fluorescence in the visible region and their properties vary according to the substituents on the coumarin ring (Novak \& Kovac, 2000; Machado \& Miranda, 2001).

(I)

The title compound, (I) (Luan et al., 2002), shows good photochemical stability, high-fluorescence quantum yields $\left(\Phi_{f}\right)$ in solvents of different polarities, and generates singlet oxygen with a relatively low quantum efficiency (Machado et al., 2002). These characteristics make it suitable for use as a laser dye in the range between 438 and 450 nm .

X-ray analysis of (I) was undertaken as a part of studies to elucidate the relationships between the characteristics of the functional dyes containing the coumarin skeletons and their molecular structures.

An ORTEP-3 (Farrugia, 1997) drawing of (I) is shown in Fig. 1, and selected geometric parameters presented in Table 1. The angle between the benzoxazole and the coumarin moieties is $5.24(8)^{\circ}$, showing some deviation from planarity, as observed for other coumarin derivatives (Dhaneshwar et al., 1988; Chinnakali et al., 1990). The two ring systems are each planar.

The coumarin skeleton geometry can be compared with that of unsubstituted coumarin (Gavuzzo et al., 1974), of coumarin-3-carboxylic acid (Dobson \& Gerkin, 1996) and of 3-(bromoacetyl)coumarin (Vasudevan et al., 1991). The double-bond character of $\mathrm{C} 3-\mathrm{C} 4$ is observed in all these compounds. The $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 4-\mathrm{C} 10$ bonds, adjacent to the double bond, are systematically longer than $1.40 \AA$ in these four molecules. The angles $\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$ and $\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 4$ at the junction of the two rings are, respectively, smaller and greater than 120°. The angles around C2 follow the same behavior in all the compounds.

Received 12 July 2002
Accepted 30 July 2002 Online 9 August 2002

Figure 1
An ORTEP-3 view (Farrugia, 1997) of (I), showing 50% probability displacement ellipsoids.

Compared with unsubstituted coumarin (Gavuzzo et al., 1974), the decrease in the $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ bond angle by 2° and increase in $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$ by the same amount may be due to the benzoxazole group substituted at C3. The bond distances and angles in the benzoxazole moiety are within normally expected ranges. The bond length $\mathrm{C} 3-\mathrm{C} 11$ is in good agreement, within experimental error, with those observed in 3-(2-benzimidazolyl)-7-(diethylamino)coumarin (Chinnakali et al., 1990) and 3-(2-benzothiazolyl)-7-(diethylamino)coumarin (Jasinski \& Paight, 1995).

In this crystal structure the molecule is linked to inversionand glide-related neighbours by several directionally specific $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Table 2). The $\mathrm{Csp}{ }^{2}-$ $\mathrm{H} \cdots \mathrm{O}$ interaction links the molecules in an infinite zigzag in the [102] direction, while the $\mathrm{Csp} p^{2}-\mathrm{H} \cdots \mathrm{N}$ produces an infinite zigzag in the [001] direction (Fig. 2). The shape and disposition of molecules in the structure and the rather high density ($1.491 \mathrm{Mg} \mathrm{m}^{-3}$; values for analogous molecules typically lie in the range $1.34-1.42 \mathrm{Mg} \mathrm{m}^{-3}$) suggest that these close approaches are produced by attractive interactions rather than as a consequence of minimizing repulsive effects elsewhere in the molecule. Similar behavior is observed for the 7-acetoxycoumarin (Sarma \& Desiraju, 1987) and coumarin 3-carboxylic acid (Dobson \& Gerkin, 1996).

Experimental

The title compound was prepared and purified according to Luan et al. (2002). Suitable single crystals were grown from chloroform/ methanol (1:1 v) by slow evaporation.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{NO}_{3}$	$D_{x}=1.491 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=263.24$	Mo K α radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 25
$a=7.493(5) \AA$	reflections
$b=21.276(5) \AA$	$\theta=2.1-30^{\circ}$
$c=8.024(5) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$\beta=113.508(5)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1173.0(11) \AA^{\circ}$	Prism, yellow
$Z=4$	$0.25 \times 0.20 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& D_{x}=1.491 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=2.1-30^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.25 \times 0.20 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Figure 2
View of the (a) $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $(b) \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions in the crystal structure of (I).

Data collection

Enraf-Nonius Turbo-CAD-4 diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: none 3638 measured reflections 3409 independent reflections
1232 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.120$

$S=0.80$

3409 reflections 208 parameters
$\theta_{\text {max }}=30.0^{\circ}$
$h=0 \rightarrow 10$
$k=-29 \rightarrow 0$
$l=-11 \rightarrow 10$
3 standard reflections frequency: 120 min intensity decay: 6\%

> Only coordinates of H atoms refined
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0479 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

O1-C9	$1.374(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.356(3)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.381(3)$	$\mathrm{C} 3-\mathrm{C} 11$	$1.460(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.203(2)$	$\mathrm{C} 4-\mathrm{C} 10$	$1.420(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.462(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.392(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	$116.2(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$122.0(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$127.6(2)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$117.7(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$116.19(19)$	$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 4$	$123.8(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.0(2)$		
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N}$	$6.5(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 11-\mathrm{O} 3$	$-173.7(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11-\mathrm{N}$	$-173.4(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 11-\mathrm{O} 3$	$6.4(3)$

Table 2
Intermolecular interaction geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.97(2)$	$2.66(2)$	$3.626(3)$	$175.9(17)$
$\mathrm{C}^{\mathrm{i}} 4-\mathrm{H} 14 \cdots \mathrm{O}^{\mathrm{ii}}$	$1.02(2)$	$2.53(2)$	$3.283(3)$	$130.7(15)$
${\mathrm{C} 13-\mathrm{H} 13 \cdots 3^{\mathrm{ii}}}_{\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{1 i i}}$	$0.97(2)$	$2.65(2)$	$3.572(3)$	$160.0(17)$
Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z ;$ (ii) $-x,-y,-z ;$ (iii) $1-x,-y, 2-z$.				

H atoms were located by difference Fourier synthesis; the positional parameters have been refined with $U_{\text {iso }}$ set to 1.2 times the value of $U_{\text {eq }}$ of the atom to which they are attached. The final refined $\mathrm{C}-\mathrm{H}$ distances ranged from 0.88 (2) to 1.02 (2) \AA, with a mean value of 0.96 (2) Å.

Data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3
for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Brazilian agencies CNPq, Fapemig and CAPES for financial support. Dr M. T. P. Gambardella, of the Instituto de Química de São Carlos of the Universidade de São Paulo, is acknowledged for the data collection.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Chinnakali, K., Sivakumar, K. \& Natarajan, S. (1990). Acta Cryst. C46, 405407.

Dhaneshwar, N. N., Tavale, S. S. \& Guru Row, T. N. (1988). Acta Cryst. C44, 1858-1860.
Dobson, A. J. \& Gerkin, R. E. (1996). Acta Cryst. C52, 3081-3083.
Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gavuzzo, E., Mazza, F. \& Giglio, E. (1974). Acta Cryst. B30, 1351-1357.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Jasinski, J. P. \& Paight, E. S. (1995). Acta Cryst. C51, 531-533.
Krasovitskii, B. M. (1988). Organic Luminescent Materials, edited by B. M. Krasovitskii and B. M. Bolotin, ch. 7. Weinheim: VCH.
Luan, X. H., Cerqueira, N. M. F. S. A., Oliveira, A. M. A. G., Raposo, M. M. M., Rodrigues, L. M., Coelho, P. \& Oliveira-Campos, A. M. F. (2002). Advances in Colour Science and Technology, 5, 18-23.
Machado, A. E. H., Miranda, J. A., Guilardi, S., Nicodem, D. E. \& Severino, D. (2002). Spectrochim. Acta A. In the press.

Machado, A. E. H. \& Miranda, J. A. (2001). J. Photochem. Photobiol. A Chem. 141, 109-116.
Novak, I. \& Kovac, B. (2000). J. Electron Spectros. Relat. Phenom., 113, 9-13.
O'Kennedy, R. \& Thornes, R. D. (1997). Editors. Coumarins. Biology, Applications and Mode of Action. Chichester: Wiley.
Sarma, J. A. R. P. \& Desiraju, G. R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1195-1202.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Vasudevan, K. T., Puttaraja \& Kulkarni, M. V. (1991). Acta Cryst. C47, 775777.

